Influence of hydrodynamics and cell signaling on the structure and behavior of Pseudomonas aeruginosa biofilms.

نویسندگان

  • B Purevdorj
  • J W Costerton
  • P Stoodley
چکیده

Biofilms were grown from wild-type (WT) Pseudomonas aeruginosa PAO1 and the cell signaling lasI mutant PAO1-JP1 under laminar and turbulent flows to investigate the relative contributions of hydrodynamics and cell signaling for biofilm formation. Various biofilm morphological parameters were quantified using Image Structure Analyzer software. Multivariate analysis demonstrated that both cell signaling and hydrodynamics significantly (P < 0.000) influenced biofilm structure. In turbulent flow, both biofilms formed streamlined patches, which in some cases developed ripple-like wave structures which flowed downstream along the surface of the flow cell. In laminar flow, both biofilms formed monolayers interspersed with small circular microcolonies. Ripple-like structures also formed in four out of six WT biofilms, although their velocity was approximately 10 times less than that of those that formed in the turbulent flow cells. The movement of biofilm cell clusters over solid surfaces may have important clinical implications for the dissemination of biofilm subject to fluid shear, such as that found in catheters. The ability of the cell signaling mutant to form biofilms in high shear flow demonstrates that signaling mechanisms are not required for the formation of strongly adhered biofilms. Similarity between biofilm morphologies in WT and mutant biofilms suggests that the dilution of signal molecules by mass transfer effects in faster flowing systems mollifies the dramatic influence of signal molecules on biofilm structure reported in previous studies.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Relationship of cell surface hydrophobicity with biofilm formation and growth rate: A study on Pseudomonas aeruginosa, Staphylococcus aureus, and Escherichia coli

Objective(s): This study was designed to determine the relationship of Pseudomonas aeruginosa, Staphylococcus aureus, and Escherichia coli isolates in multispecies biofilms and their individual phenotypic characters in biofilm consortia. Materials and Methods:  The subject isolates were recovered from different food samples and identified on the basis of growth on differential and selective med...

متن کامل

One-step purification and characterization of alginate lyase from a clinical Pseudomonas aeruginosa with destructive activity on bacterial biofilm

Objective(s): Pseudomonas aeruginosais a Gram-negative and aerobic rod bacterium that displays mucoid and non-mucoid phenotype. Mucoid strains secrete alginate, which is the main agent of biofilms in chronic P. aeruginosa infections, show high resistance to antibiotics; consequently, the biological disruption of mucoid P. aeruginosa biofilms is an attractive area of study for researchers. Algin...

متن کامل

In vitro activity of Quercus brantii extracts against biofilm- producing Pseudomonas aeruginosa

Background: Biofilm formation by Pseudomonas aeruginosa is a serious concern in treatment of diseases and medical industries. Natural products that originate in plants can influence microbial biofilm formation. The effect of ethyl acetate, methanol and water- methanol extracts of Quercus brantii on biofilm formation and biofilm disruption of P. aeruginosa were investigated in this study. Methods...

متن کامل

The effect of bromhexine, gentamicin and imipenem on biofilm of standard bacterial Escherichia coli and Pseudomonas aeruginosa by ELISA method

Background: Biofilms are a collection of microorganisms that have the ability to stick to different levels. Due to the difficulty of treatment of bacterial biofilm infections and their lack of recognition by conventional diagnostic methods, this study aimed to provide a new method of identification and the effect of related drugs on Pseudomonas aeruginosa and Escherichia coli biofilms. Material...

متن کامل

بیوفیلم پسودوموناس ایروژینوزا و روش‌های پیشگیری و درمان‌های تازه آن

  Background and Objective: Microbial biofilms are responsible for 65% of human infections, and are resistance to antibiotics. Pseudomonas aeruginosa is one of the most important biofilm producing bacteria. This review tries to explain the last mechanisms of Pseudomonas aeruginosa biofilm formation, the reasons for its resistance to antimicrobial agents, as well as new preventive measures and a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Applied and environmental microbiology

دوره 68 9  شماره 

صفحات  -

تاریخ انتشار 2002